0898-08980898
开云体育官方,开云体育app,开云app下载,开云棋牌,开云直播,开云体育靠谱吗,开云体育和亚博,开云体育老板是谁,开云官网,开云体育,开云直播英超,开云电竞,开云游戏,开云,开云体育官网,开云体育官方网站, 开云app, kaiyun sports, 开云体育简介, 开云体育官方平台, 世界杯开云, 开云体育app下载, 开云体育网址, 开云体育2025
QwQ-32B 模型表现出色,几乎完全超越了OpenAI-o1-mini,比肩最强开源推理模型DeepSeek-R1:在测试数学能力的AIME24评测集上,以及评估代码能力的LiveCodeBench中,千问QwQ-32B表现与DeepSeek-R1相当,远胜于o1-mini及相同尺寸的R1蒸馏模型;在由Meta首席科学家杨立昆领衔的“最难LLMs评测榜”LiveBench、谷歌等提出的指令遵循能力IFEval评测集、由加州大学伯克利分校等提出的评估准确调用函数或工具方面的BFCL测试中,千问QwQ-32B的得分均超越了DeepSeek-R1。
据介绍,在初始阶段,QwQ-32B模型特别针对数学和编程任务进行了 RL 训练。与依赖传统的奖励模型(reward model)不同,通过校验生成答案的正确性来为数学问题提供反馈,并通过代码执行服务器评估生成的代码是否成功通过测试用例来提供代码的反馈。随着训练轮次的推进,这两个领域中的性能均表现出持续的提升。在第一阶段的 RL 过后,增加了另一个针对通用能力的 RL。此阶段使用通用奖励模型和一些基于规则的验证器进行训练。最后发现,通过少量步骤的通用 RL,可以提升其他通用能力,同时在数学和编程任务上的性能没有显著下降。(果青)